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ABSTRACT 

In many military environments, such as fighter jet cockpits, the increasing use of 
digital communication systems has created a need for robust vocoders and 
speech recognition systems. However, the high level of ambient noise in such 
environments makes vocoders less intelligible and makes reliable speech 
recognition more difficult. One method of enhancing the noise-corrupted speech 
is adaptive noise cancellation. In previous research, this method was tested in a 
simulated cockpit environment, yielding impressive results. However, in new 
simulations, reflecting more realistic conditions, adaptive noise cancellation has 
been less successful. Spectral analysis of the data shows that the spectral 
concentration of the ambient noise, along with the microphone characteristics, 
has a significant effect on the performance of adaptive noise cancellation. 
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ADAPTIVE NOISE REDUCTION 
IN AIRCRAFT COMMUNICATION SYSTEMS 

1.    INTRODUCTION 

With the advent of digital communication systems in fighter aircraft, there has been an 
increasing interest in developing vocoders and speech recognition systems for use in aircraft. How- 
ever, the high levels of ambient noise in such environments make vocoders less intelligible and 
make reliable speech recognition more difficult. Therefore, attention has been directed toward the 
problem of enhancing the pilot's noise-corrupted speech. One method of improving the signal-to- 
noise ratio is adaptive noise cancellation (ANC). 

ANC is a noise-reduction method that assumes no a priori knowledge of the noise or speech 
characteristics. Therefore, this technique has been considered for the problem of noise reduction 
in the cockpit environment, where combat conditions can lead to highly variant noise conditions. 
This method uses multiple inputs: a primary signal and one or more reference signals. The pri- 
mary signal contains the noisy speech that needs enhancement. A second sensor provides the ref- 
erence signal, which ideally contains only the ambient noise and no speech components. (In this 
research, only one reference input was used.) Adaptive filtering techniques are applied to these 
two signals in order to reduce the noise level in the primary output. 

In previous research by Harrison,9 ANC was tested on data collected from a simulation of a 
fighter jet cockpit environment. This resulted in a reduction of the noise by the impressive 
amount of 11 dB. However, in a subsequent publication, Darlington et al.,4 claimed that Harri- 
son's success was a result of his use of only one noise source. In an actual cockpit environment, 
they claimed, the noise is diffusely distributed. In such a noise field, with the primary and refer- 
ence sensors separated by a few centimeters, the coherence between the primary and reference sig- 
nals becomes very small at frequencies above about 1 kHz. Therefore, ANC should perform 
poorly in an actual cockpit environment, in which there is a significant amount of noise above 
1 kHz. 

In order to assess the performance of ANC in a more realistic environment, new simulations 
were performed at the Wright-Patterson Air Force Base near Dayton, Ohio. One of the issues 
studied in these experiments was the effect of using multiple loudspeakers for generating the 
ambient noise field. When ANC was found to perform poorly on the data collected from these 
experiments, a second series of tests was conducted at MIT Lincoln Laboratory in Lexington, 
Massachusetts. This time, much attention was given to the primary microphone characteristics. 
Using only one loudspeaker, two types of primary microphones were tried: the standard-issue gra- 
dient microphone and an omnidirectional microphone. In analyzing the data from these experi- 
ments, the speech signals were not used; only the primary and reference noise signals were 
studied. When the gradient microphone was used, ANC only reduced the noise by about 2 dB. 



When the omnidirectional microphone was used, ANC reduced the noise by about 9 dB. There- 
fore, the microphone characteristics seem to be an important factor. A thorough spectral analysis 
of all the data clearly shows why this is the case. 

This report is organized into six sections. The second section includes an introduction to the 
theory of ANC. Section 3 summarizes previous research of ANC in aircraft communication sys- 
tems. In the fourth section, the new simulations are described. The fifth section presents the 
experimental results, including a spectral analysis of the data. Finally, concluding remarks are 
given, along with suggestions for future research. 



2.    ADAPTIVE NOISE CANCELLATION 

One method of enhancing speech corrupted with additive noise is to pass the signal through 
a linear, time-invariant filter. If the statistics of the speech and noise are stationary and known, 
then Wiener filtering theory can be used. However, when there is no a priori knowledge of the 
speech or noise, or when their statistics are nonstationary, adaptive filtering can often be an 
effective alternative. 

Adaptive noise cancellation3-5'10'19-20'21 is a noise-reduction method that uses multiple inputs: 
a primary signal and one or more reference signals. For speech applications, the primary signal is 
the noisy speech that we want to enhance. The reference signals are obtained from auxiliary sen- 
sors, located in the same noise field, but isolated from the primary sensor. For simplicity, we 
shall only consider the case of one reference signal. To enhance the noisy speech, the reference 
signal is adaptively filtered and then subtracted from the primary signal. The resulting output will 
hopefully contain the undegraded speech with less noise than the primary signal. 

In this section, we begin with the theoretical development of ANC. This is followed by a 
description of the LMS algorithm, one method of implementation. In the final section, several 
limitations of ANC are discussed. 

2.1    THEORETICAL DEVELOPMENT 

Figure 2-1 shows the basic model of adaptive noise cancellation.19 Here, s is the primary 
speech signal and nr is the reference noise signal. In this model, the reference noise, nr, passes 
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Figure 2-1.    Basic ANC model. 



through some transformation, H, to form the primary noise signal, np. In general, this transfor- 
mation can be nonlinear and time-variant. However, the success of ANC depends upon the 
assumption that H is at least approximately linear. The primary signal (i.e., the noisy speech), p, 
is simply the sum of the primary speech and the primary noise signals. In order to enhance this 
primary signal, the reference noise is first processed by an adaptive filter, H, resulting in an esti- 
mate, y, of the primary noise. Finally, this noise estimate is subtracted from the primary signal, 
yielding the enhanced output, z. In this model, we assume that s and nr are uncorrelated random 
processes. If H were known a priori, then the trivial solution would be to let H = H. Unfortu- 
nately, though, H is unknown in many cases of interest. 

In order for the output, z, to be a minimum-mean-squared-error (MMSE) estimate of the 
desired signal, s, the adaptive filter must be varied so that the output noise power is minimized. 
For simplicity, assume that s and nr are zero-mean, wide-sense stationary random processes. 
Because s is assumed to be uncorrelated with nr, s is also uncorrelated with np and y. We can 
now compute the output noise power: 

E[(z - s)2] = E[z2] - 2E[sz] + E[s2] 
= E[z2]-2E[s(s + np-y)] + E[s2] 
= E[z2] - E[s2] - 2E[snp] + 2E[sy] 
= E[z2]-E[s2] (2.1) 

The signal power, E[s2], is unaffected by the adaptive filter. Therefore, the output noise power is 
minimized by minimizing E[z2], the total output power. Equivalently, we can compute the mean 
squared error in terms of the error, y - np, in the noise estimate: 

E[(z - s)2] = E[(s + np - y - s)2] 
= E[(y - np)2]        . (2.2) 

This result shows that z is a MMSE estimate of s when y is a MMSE estimate of np, which 
agrees with intuition. Indeed, if it is possible to design H so that y = np exactly, then the output 
will be noise-free, with z = s. 

Thus, ANC can be viewed in several ways. In order for z to be a MMSE estimate of s, the 
adaptive filter coefficients must be varied in a particular manner. If they are chosen properly, 
then we will simultaneously realize the following equivalent results: 

• z is a MMSE estimate of s; 
• y is a MMSE estimate of n • 
• The output noise power is minimized; 
• The total output power is minimized. 

Minimization of the total output power is the basis for most ANC algorithms. The LMS algo- 
rithm was used to perform this minimization by continually updating the filter coefficients. 



Suppose H is implemented as a linear, adaptive filter. Then perfect noise cancellation will 
only be possible if np and nr are related by a linear filter. If n_ and nr are correlated, but are not 
related by a linear filter, thereby violating the model in Figure 2-1, then the noise cancellation 
will only be partially effective. It is also instructive to consider the case in which the primary and 
reference noises are uncorrelated. In this case, the primary noise is uncorrelated with the filter 
output, y. Therefore, the output noise power becomes 

E[(z-s)2]=E[(s + np-y-s)2] 

= E[(np-y)2] 

= Etnp2] - 2E[ynp] + E[y2] 

= Etnp2] + E[y2]        . (2.3) 

This is minimized by forcing all the filter coefficients to be zero, thereby shutting off the filter 
and causing E[y2] = 0. The result is z = p. Therefore, when the input noises are uncorrelated, no 
noise cancellation occurs. 

If s and nr are stationary, and H is time-invariant, then we can use Wiener filtering theory 
to determine the optimal H(z), in terms of s and nr. The classic form of a single-input, single- 
output Wiener filter is shown in Figure 2-2. Here, the input, x, passes through a linear, time- 
invariant filter, H(z). The filter is chosen so that the output, y, is an optimal estimate (in the 
least-squares sense) of the desired signal, d. By comparing Figure 2-1 and 2-2, we see that sta- 
tionary ANC (with a linear H) can be viewed as a Wiener problem, with x = nr, d = p, and 
e = z. Of course, we must assume that the adaptive process has converged to the steady-state 
solution. 
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Figure 2-2.    Wiener filter. 



It is well-known that the Wiener solution is given by the equation, 

Snrp(z) 

where 

H(z) 
S„„(z) 

(2.4) 

oo 

Snrp(z) =      X     EK(n)P(n + m)lz" (2.5) 

Siyir(z) =      2    E[nr(n)nr(n + m)]z- (2.6) 
m 

If nr and np are exactly related by a linear filter, in accordance with the model in Figure 2-1, 
then the Wiener filter reduces to 

H(z) = 
Snrnr(z)H(z) 

Snrnr(z) 

H(z) 

(2.7) 

as we would expect. In a general environment, where s and nr may be nonstationary and H may 
be time-variant, H will tend to track H. However, the adaptive process takes time to converge. 
Therefore, successful tracking will occur only if the environment varies slowly. 

2.2    LMS ALGORITHM 

The adaptive filter, H, is usually implemented as an FIR filter with variable coefficients. This 
is sometimes called an adaptive linear combiner or a tapped delay line. One of the more popular 
methods of updating the coefficients is the Widrow-Hoff LMS algorithm.19 This algorithm is one 
of a class of algorithms that use the method of steepest descent to search for the optimal solu- 
tion. The development of this algorithm begins with a general expression for the total output 
power as a function of the filter coefficients. In Section 2.1, we saw that optimal noise cancella- 
tion is achieved when the coefficients are adapted to minimize the total output power. 

Let the impulse response of the adaptive filter be zero outside the interval, 0 ^ n < L. To 
simplify the notation, define a time-variant vector of filter weights as 

Jb 

!}0 
h, 



where h0, hj, ..., and hL_! represent the filter coefficients and n is the time index. Similarly, we 
define a vector containing the latest L samples of the reference signal: 

In 

rn-(L-l)_ 

Then the output of the adaptive filter at time n is the inner product or rn and hn: 

yn=J]!£n . 

The output of the system is given by 

Zn = Pn-yn = Pn-hn[n     • 

(2.8) 

(2.9) 

We must now adjust the filter weights so that the total output power is minimized. To do 
this, we first assume that the inputs are stationary and that the filter taps are fixed. Then the 
total output power, the "error function", is 

E^=E[(Pn-Sln)2] 
= E [Pn2! - 2E[pn£T]hn • fijfe&rjfe,       • (2.10) 

For simplicity, define Cn = E[pnrn] and Rn = E[rnr£j. Then the equation can be written as 

BDtf = EtPn2] - 2C^hn + hTRnhn (2.11) 

Therefore, the error function is a quadratic function of the weight vector, hn. That is, this equa- 
tion defines a hyperparaboloid in RL. Because the output power is nonnegative, this surface must 
be concave upward. Consequently, there exists a unique global minimum, with no other local 
minima. 

One way of searching for this minimum is the method of steepest descent. This is an itera- 
tive solution that continually updates the filter coefficients until the global minimum is reached. 
At each iteration, the filter taps are changed by an amount proportional to the negative gradient 
of the output power: 

iln+1 -hn-vln (2.12) 

Here, n is an adaptation constant that controls stability and determines the rate of convergence. 
V n is the gradient of the error function at time n. This is obtained by differentiating Equa- 
tion (2.11) with respect to the filter coefficients: 

(2.13) 
-( 

dh. dh L-l 
-2C„ + 2Rnhn 



Instead of using this exact form of the gradient, the Widrow-Hoff LMS algorithm estimates the 
gradient by assuming that z^ is a reasonable approximation of E[z^]. Thus, we differentiate zj; 
with respect to the filter coefficients: 

(dz\ dz2
n \

T /dzn dzn \
T 

^•••.^=2zn— -•••.—        ="2^ (2-14) 

The LMS algorithm is obtained by substituting this gradient estimate into Equation (2.12): 

k+l=k + 2^nLn (2-15) 
This provides an easy way to iteratively compute an approximation of the optimal filter coeffi- 
cients. For comparison, the ideal solution is easily obtained by setting the gradient of the error 
function to zero and solving for the filter weight vector. Using Equation (2.13), we obtain 

h* = R;'Cn        . (2.16) 

This optimal filter weight vector is generally called the Wiener weight vector. 

It can be shown that the gradient estimate used in the LMS algorithm is unbiased. However, 
the convergence of the filter weights is a much more complicated issue. If we make the assump- 
tion that the input vectors, rn, are stationary and uncorrelated over time, then the expected value 
of the vector of filter weights can be shown to converge to the Wiener weight vector: 

limhn = h*       . (2.17) 
n-oo 

However, this convergence is guaranteed only if 

0< M< —— (2.18) 

where Xmax is the largest eigenvalue of R. (Rn is constant because r is stationary.) Rather than 
compute the eigenvalues, we can instead find an approximate upper bound for n by considering 
the trace of R. Because this is a positive semidefinite matrix, we have the following inequality: 

L 

*max ^ X Ai = trtB] (219) 
i=l 

Because we are assuming stationarity of the reference signal, we have tr[R] = LE[r2], where E[r-J 
is simply the reference signal power. This leads to the following approximation for the bounds on 

0 < /u< =  • (2.20) 
tr[R]       LE[r2] 



Although this analysis has assumed that the reference signal vectors are uncorrelated and station- 
ary, the results seem to apply reasonably well in general practice. Unfortunately, no uncondi- 
tional proof of convergence of the LMS algorithm is known at this time. 

In addition to the bias, we must also examine the steady-state covariance of the filter 
weights. Widrow derived an approximate result, 

cov[hn]~M£minJ_ (2.21) 

where £min is the theoretical minimum value of E[z^] and _I_ is the identity matrix. Therefore, a 
small adaptation constant results in less noise in the steady-state filter weights. 

Unfortunately, a small adaptation constant also corresponds to slow convergence. The learn- 
ing curve for the system output noise power can be approximated by a sum of exponentials. 
Widrow derived an estimate of the average time constant associated with this learning curve: 

L 1 
r «  «   (2.22) 

4Mtr[R] 4ME[r2] 

Therefore, the time constant for convergence is inversely proportional to the adaptation constant. 
As a result, there is a trade-off between the steady-state covariance of the filter coefficients and 
the rate of convergence. However, if the environment is nonstationary, then a large adaptation 
constant must be chosen in order to provide adequate tracking of the environment. In this case, 
there is less freedom in choosing the adaptation constant. 

2.3    LIMITATIONS 

In this section, we address several factors that can degrade the performance of adaptive noise 
cancellation. These include several practical considerations, as well as two conditions that violate 
the basic model in Figure 2-1. One such violation is the presence of uncorrelated noises in the 
inputs. Another condition not accounted for in the model is the presence of speech components 
in the reference signal. As we shall see, these can seriously reduce the effectiveness of noise 
cancellation. 

To begin with, there are several practical limitations associated with adaptive filtering. The 
LMS algorithm uses a causal, finite-extent, adaptive filter to estimate the transformation, H. 
However, H is not always modeled well by a causal filter. Therefore, it may be necessary to 
introduce a small delay into either the primary or the reference channel in order to achieve 
approximate causality. Another problem is limited frequency resolution. The frequency resolution 
is inversely proportional to the length of the impulse response of the adaptive filter. Conse- 
quently, there is a trade-off between the frequency resolution and the amount of computation. 

In many applications, the convergence time of the adaptive filter is also a significant issue. 
Even in a stationary environment, the filter coefficients must undergo many iterations before they 
converge. This convergence time depends on several factors: the algorithm used to implement the 
adaptation, the length of the adaptive filter, and the shape of the reference noise spectrum. 



In addition to these considerations, there are further limitations of ANC. In particular, the 
model of Figure 2-1 is often unrealistic. One condition that violates this model is the presence of 
uncorrelated noises in the primary and reference inputs.19 To study this problem, let us first 
extend the original model to include uncorrelated noise sources, mr and mp. The modified model 
is shown in Figure 2-3. The primary signal now contains three components: p = s + np + mp. 

• * 
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Figure 2-3.    ANC model with uncorrelated noises. 

Similarly, the reference signal, r, is now given by r = nr + mr. Next, define the signal-to-noise 
density ratio (SNDR), p, to be the ratio of the signal power spectral density to the noise power 
spectral density. This gives us a measure of the signal-to-noise ratio as a function of frequency. 
Assume that H is linear and time-invariant, and that all of the signals are stationary. For 
convenience, define the ratio of the uncorrelated noise spectrum and the correlated noise spec- 
trum at the primary input to be 

A(z) = 
Smpm

P
(z) 

Sn„n (Z) 
p p 

(2.23) 

10 



Similarly, define the ratio of the uncorrelated noise spectrum and the correlated noise spectrum 
at the reference input to be 

SmmW 
B(z)= . (2.24) 

Snrnr(z) 

Then it can be shown that the ratio of the output SNDR to the primary SNDR is 

Pout(z)        [A(z) + 1] [B(z) + 1] 

ppri(z)       A(z) + A(z)B(z) + B(z) 
(2.25) 

This formula provides a measure of the performance of ANC in the presence of uncorrelated 
noises. It is important to note that if mp and mr are zero, then A(z) and B(z) are zero. From 
Equation (2.25), it is evident that, if this were the case, then there would be an infinite improve- 
ment in the SNDR. This is expected because, as was shown in the previous section, the Wiener 
solution could be used to give exact cancellation of the noise, resulting in a pure speech signal at 
the output. In general, the presence of uncorrelated noises diminishes the performance of ANC. 
From Equation (2.25), it is clear that the performance is maximized by minimizing A(z) and B(z), 
which measure the amount of uncorrelated noise present. 

Another measure of the presence of uncorrelated noises is called the coherence.16 The 
magnitude-squared coherence between two wide-sense-stationary random processes, x and y, is 
defined to be 

2       _       | Sxy(z)| 2 

^xx(z)  ^yy(z) 

where 

Sxy(z)=      X    E[x(n)y(n + m)]z-n> (2.27) 
m = -*> 

oo 

SXx(z)=     X    E[x(n)x(n + m)]r<" (2.28) 

Syy(z)=      X    E[y(n)y(n + m)]z-m (2.29) 
m = _oo 

(A more general definition would include a phase term. However, we shall only consider the 
magnitude.) For convenience, we shall refer to the magnitude-squared coherence simply as the 
coherence. It can be shown that the coherence, 7xy(z), represents the fraction of Syy(z) that is 
related to Sxx(z) by a linear filter. If x and y are the input and output of a linear, time-invariant 

11 



filter, then their coherence equals one. If y contains spectral components that are uncorrelated 
with x, then the coherence is less than one at the corresponding frequencies. If x and y are 
uncorrelated, then the coherence equals zero. Therefore, the coherence can be thought of as a 
correlation coefficient that is a function of frequency. Because ANC uses the reference noise to 
estimate the primary noise, a large coherence between the primary and reference noise signals is 
necessary if ANC is to be effective. In fact, an estimate of the amount of noise reduction can be 
given in terms of the coherence: 

Pout(z) < 

MZ> • " <n.00 
(2.30) 

r  P 

where y2 (z) is the coherence between the primary and reference noise signals. Therefore, it is 

clear that the performance increases as the coherence approaches one. It is also useful to define 
an attenuation function that measures the expected noise reduction in decibels: 

attend) = -10 log10[l-y2   (ei«)] dB (2.31) 

In Section 5, the coherence and the attenuation function are used to analyze the performance of 
ANC with experimental data. 

Another violation of the basic model is the leakage of speech components into the refer- 
ence.20 To determine the effect of this, let the model be extended to include a path from the 
primary input to the reference input. The transformation along this path will be denoted by H2. 
For clarity, we shall now use H( to denote the transformation along the path from the reference 
to the primary. The resulting model is shown in Figure 2-4. For this discussion, the uncorrelated 
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Figure 2-4.    ANC model with speech leakage. 
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noises are omitted from the model. Of course, the environment could easily include uncorrelated 
noises in addition to speech leakage. 

Widrow has shown that the resulting SNDR at the output is given by 

PoutW = 7T- (2-32) 
Pref(z) 

where pref(z) is the SNDR at the reference input. When there is no leakage of speech into the 
reference input, this equation shows that the output SNDR will be infinite — i.e., the noise can- 
cellation is exact. However, when the reference does contain speech components, the noise reduc- 
tion will be only partially effective. Therefore, we see that the presence of speech in the reference 
does degrade the performance. 

This degradation appears as distortion of the speech in the output, caused by cancellation of 
part of the speech signal. To evaluate the extent of this cancellation, define the signal distortion, 
D(z), to be the ratio of the spectrum of the speech component of y to the spectrum of the pri- 
mary speech signal. Then it can be shown that 

Pref(z) 
D(z) =     ref (2.33) 

Ppri(z> 

Therefore, low signal distortion results from a low SNDR at the reference input and a high 
SNDR at the primary. This agrees with the intuitive behavior of the system. 

As we have seen, there are many limitations of ANC. To begin with, there are several prac- 
tical issues that need to be considered when implementing the technique. However, violations of 
the model are a much more serious issue. The presence of uncorrelated noises in the inputs 
places definite limits on the amount of noise reduction that can be expected. One useful measure 
of the amount of uncorrelated noise present is called the coherence. This measure is used later in 
the report to analyze the performance of noise cancellation. Another degradation occurs when 
speech leaks into the reference signal. This has the undesirable effect of canceling part of the 
speech in the output. Therefore, these limitations must be considered in any application of ANC. 

13 



3.   ANC IN AIRCRAFT COMMUNICATION SYSTEMS 

Adaptive noise cancellation has been successfully used in many applications. Only recently 
has it been considered for use in aircraft communication systems. The advent of digital commun- 
ication systems in fighter aircraft has generated considerable interest in developing vocoders and 
speech recognition systems for use in aircraft. However, the high levels of ambient noise in such 
environments make vocoders less intelligible and make reliable speech recognition more difficult. 
Therefore, it has been proposed that ANC be used to enhance the pilot's noise-corrupted speech. 

When ANC is applied to a fighter jet cockpit environment, numerous issues arise. For 
example, if the primary sensor is placed inside the pilot's oxygen face mask, where should the 
reference sensor be placed? Will the primary and reference noises be very correlated? What can 
be done if speech leaks into the reference input? Should the sensors be gradient microphones, or 
should they be omnidirectional microphones? 

In the past, several researchers have used cockpit simulations to study the performance of 
ANC in aircraft. Harrison9 was able to achieve significant noise reduction, but his simulation was 
very simplistic. Darlington et a/.,4 later showed that, in a diffuse noise field, the coherence 
between the primary and reference signals is very small above about 1 kHz. Therefore, they 
claimed that in an actual cockpit, ANC will only work well at very low frequencies. In this chap- 
ter, this past research is reviewed. But first, the fighter jet cockpit environment is described. 

3.1    FIGHTER JET COCKPIT ENVIRONMENT 

In a fighter jet cockpit, the pilot wears apparatus that provides him with a two-way com- 
munications link. The pilot wears an oxygen face mask, which is attached to his helmet. In turn, 
the oxygen face mask is connected to an oxygen supply via a flexible hose. Inside the face mask, 
a gradient, "noise canceling" microphone is mounted. This generates the primary signal in the 
model for adaptive noise cancellation. Also, a small acoustic speaker is mounted in each earpiece 
of the helmet. These speakers serve two purposes. First, they give the pilot the means to monitor 
radio communications. Also, they provide an audio feedback of the pilot's own speech. Without 
this feature, the pilot may find it difficult to hear himself speak, due to the high ambient noise 
level and the obstructing helmet. 

In a nonradiating enclosure, such as an oxygen face mask, a gradient microphone offers per- 
formance superior to that of a pressure microphone. According to Morrow's studies of speech in 
nonradiating enclosures, the mask cavity tends to boost the low frequency energy and shift the 
formants (especially the first) upward in frequency.'2-13 Unlike a pressure microphone, a gradient 
microphone appears to counteract this bass boost, thereby removing the need for subsequent low- 
frequency equalization. Furthermore, the locations of the formants tend to be preserved more 
with a gradient microphone than with a pressure microphone. In addition to the change in for- 
mant frequencies, pressure microphones cause drastic changes in the relative amplitudes of the 
formants. Simple equalization of the pressure-microphone signal does not restore the locations of 
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the formants; nor does it restore their relative amplitudes. Therefore, gradient microphones are 
preferred. 

The relative superiority of gradient microphones in small, nonradiating enclosures is the 
result of two basic operating characteristics.6'13 One highly desirable trait of gradient micro- 
phones is their directionality. The response to a near-field sound source is approximately propor- 
tional to the cosine of the angle of incidence (with respect to the axis of the microphone). There- 
fore, reflections from the sides of the face mask are de-emphasized. Another benefit of gradient 
microphones is their attenuation of far-field sound sources. This attenuation is quite significant at 
low frequencies, but becomes less pronounced with increasing frequency. In the cockpit applica- 
tion, the far-field sound is mostly ambient noise. Therefore, the gradient microphone becomes a 
noise-canceling microphone at low frequencies. If the power spectrum of the interfering noise 
decreases with frequency, then a significant amount of noise cancellation can result. 

In the United States Air Force, the standard-issue oxygen face mask is equipped with an 
M-101 gradient microphone." As shown in Figure 3-1, the far-field frequency response of this 
microphone peaks near 2.5 kHz. The response to frequencies below 1 kHz is much lower. In fact, 
the gain drops by about 36 dB as the frequency decreases from 1000 to 300 Hz. 
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Figure 3-1.    Frequency response of the M-101 gradient microphone. 
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3.2    PREVIOUS RESEARCH BY HARRISON 

Several researchers have studied the application of adaptive noise cancellation to the fighter 
jet cockpit environment. The most successful results were obtained by Harrison8'7-9 in a simula- 
tion of a fighter jet cockpit. The experiment was conducted in a partially soundproof room 
(about 10 ft by 10 ft) at MIT Lincoln Laboratory. In order to create the ambient noise field, 
digitally-created, white, gaussian noise was played through a loudspeaker, which was mounted on 
one of the walls. A subject, wearing a standard-issue oxygen face mask, was located near the 
loudspeaker. Two microphones were used to collect the data. One microphone, providing the 
primary signal, was placed inside the mask. A second microphone (Controlonics ME-9A electret- 
condenser type), providing the reference signal, was attached to the exterior of the mask, as close 
as possible to the primary microphone. 

Two 2-channel recordings were then made. In the first 2-channel recording, speech was 
recorded, with the noise source turned off. In the second 2-channel recording, the ambient noise 
was recorded, with the subject holding his breath. Altogether, four signals were obtained: primary 
speech, reference speech, primary noise, and reference noise. The primary speech and primary 
noise signals were then digitally combined to form a composite primary signal. Similarly, the ref- 
erence speech and reference noise signals were digitally combined to form a composite reference 
signal. The reason for recording the speech and noise separately was twofold. Because of the 
limited power of the loudspeaker, the primary noise signal was very small. Consequently, a reli- 
able recording of a composite primary signal (speech plus noise) could not be obtained, due to 
the limited dynamic range of the recording equipment. Another reason for recording the speech 
and noise separately was that the signal-to-noise ratio (SNR) could be more easily manipulated. 

Prior to Harrison's work, Boll and Pulsipher1 used ANC to enhance noisy speech in an 
environment where no acoustic barrier was present. In order to keep the leakage of speech into 
the reference at a tolerable level, the primary and reference microphones had to be placed 12 ft 
apart. In the cockpit application, the oxygen face mask provides an acoustic barrier between the 
primary and reference. Because of this barrier, Harrison was able to place the microphones much 
closer to each other. Shortening the distance between the sensors is desirable for two reasons. It 
reduces the delay between the primary and reference signals, and it increases their coherence. In 
spite of the acoustic barrier, some of the speech still manages to leak into the reference. As was 
shown in Section 2.3, the presence of speech components in the reference signal results in less 
noise reduction, along with distortion of the processed speech signal, especially when the ambient 
noise level is low. To compensate for speech leakage, Harrison made a novel modification to the 
classic ANC method. Rather than update the adaptive filter after each input sample, he only 
updated the filter taps during speech inactivity. By incorporating a speech detection algorithm, he 
was able to freeze the filter taps during speech intervals and update them during silent intervals. 
Of course, the success of this technique depends on the stationarity of the noise. During speech 
intervals, the system must use a filter that was trained during the previous silent interval (up to 
0.6 s earlier, according to Harrison). Furthermore, it is assumed that the silent intervals are long 
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enough for the filter to converge. With the LMS algorithm, Harrison found that the convergence 
typically took about 120 ms. 

In spite of these limitations, he was able to achieve very good results. Before processing the 
data, the primary signal was delayed by a small amount to force causality. By adding the 
appropriate delay, a shorter filter length could be used. Harrison found that a filter length of 
50 taps was enough to increase the SNR by approximately 11 dB. Furthermore, the performance 
was approximately independent of the primary SNR. In addition to the LMS algorithm, Harri- 
son tried the recursive least squares (RLS) algorithm for updating the filter coefficients. The RLS 
algorithm offers faster convergence at the expense of more computation. The two algorithms per- 
formed comparably. 

3.3    PREVIOUS RESEARCH BY DARLINGTON ET AL. 

Subsequent to Harrison's research, new findings were reported by Darlington ex al.4 They 
claimed that Harrison's simulation, which used only one loudspeaker, did not accurately represent 
an actual cockpit environment. Rather than modeling the noise field as a single noise source, 
they suggested modeling it as a diffuse noise field. In a diffuse noise field, the noise does not 
emanate from any one direction, but instead comes from independent sources from all directions. 

The success of adaptive noise cancellation depends on the coherence between the primary 
and reference noise signals. However, it can be shown that, in a diffuse noise field, the coherence 
decreases as the spacing between the primary and reference sensors increases. This, of course, is 
the main reason for placing the reference microphone as close to the primary as possible. How- 
ever, the coherence decreases not only with distance, but with frequency as well. It can be shown 
that, in a diffuse noise field, the coherence between the sound pressure levels at two points, r and 
p, is given by 

->     ; sin(a>d/c) 2 ,_ ,. 
yU^)=       ., (3-D rpv 

cod/c 

where w is the frequency, d is the distance between r and p, and c is the speed of sound.16 (Here, 
no speech components are present.) The theoretical coherence for a typical spacing of 6 cm is 
shown in Figure 3-2. It is clear that there is little coherence above 1 kHz. In order to see the 
effect of this poor coherence on the performance of ANC, we compute the ideal attenuation 
function (from Equation 2.31): 

atten(eiw) = -10 1og10[l-7;p(eiw)]       dB       . (3.2) 

Figure 3-3 shows a graph of the attenuation corresponding to the theoretical coherence in 
Figure 3-2. 
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Figure 3-2.    Theoretical coherence in a diffuse noise field. 
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Figure 3-3.    Theoretical attenuation in a diffuse noise field. 
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Darlington et ai, simulated a diffuse noise field in order to verify these theoretical results 
experimentally. Their simulation was similar to Harrison's, except that they used a British oxygen 
face mask and a more diffuse noise field. Using the data from this experiment, they estimated the 
coherence function. They found that the experimental coherence agreed quite well with the theo- 
retical coherence. Therefore, they concluded that, in an actual cockpit, single-channel ANC will 
only be successful at very low frequencies. 

The coherence function has thus been established as a valuable tool in the study of noise 
fields. However, these researchers did not measure the performance of ANC with their experi- 
mental data. While the relation between coherence and ANC has been shown theoretically, it has 
not been adequately studied experimentally. Also, the extent to which an actual cockpit environ- 
ment agrees with the diffuse noise field remains an unanswered question. 

Finally, one more point should be made. It has been shown that the coherence is high only 
for frequencies below about 1 kHz. If the primary signal is concentrated below 1 kHz, then ANC 
should work well. Therefore, the shape of the primary power spectrum is critical. In Section 5, 
experimental data supporting this is presented. 
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4.   NEW SIMULATIONS 

New simulations were conducted in order to extend Harrison's results to a more realistic 
environment. Previous simulations were limited in several respects. In the new simulations, much 
more attention was given to the microphone characteristics and the diffuseness of the noise. Two 
series of experiments were conducted. The first set of experiments took place at Wright-Patterson 
Air Force Base near Dayton, Ohio. The second set of experiments took place at MIT 
Lincoln Laboratory in Lexington, Massachusetts. 

4.1    SHORTCOMINGS OF PREVIOUS SIMULATIONS 

Harrison's simulation of a cockpit environment was kept very simple for practical reasons 
and for convenience. Some of the simplifications were not critical, whereas others probably 
affected his results. 

To begin with, only one loudspeaker was used to generate the ambient noise. In an actual 
cockpit environment, the noise sources generally are not localized in any one area. Instead, the 
noise is scattered, emanating from all directions. Consequently, the noise field is modeled better 
by an array of loudspeakers, scattered in many directions, than by a single loudspeaker. Also, 
when only one loudspeaker is used, the direction of the loudspeaker, relative to the reference 
microphone, could affect the coherence between the primary and reference noise signals. By using 
multiple loudspeakers, placed in various directions, the effect of the orientation of the reference 
microphone is lessened. 

In Harrison's experiment, the subject wore only the oxygen face mask, which was held in 
place by hand. The helmet and oxygen tank were disconnected. While worth mentioning, this 
modification probably had little effect on the results. 

As previously discussed, the speech and noise were recorded separately and digitally com- 
bined later. Although this resulted in artificial signals, the signal-to-noise ratio could be manipu- 
lated easily without requiring additional recordings. The need for separate recordings was a prac- 
tical one. Relative to the primary speech signal, the primary noise signal is usually quite small 
—i.e., the primary SNR is large (approximately 25 dB). Consequently, a reliable composite pri- 
mary signal (speech plus noise) could not be obtained, due to the limited dynamic range of the 
recording equipment. It is unclear whether this artificial generation of the signals had any effect 
on Harrison's results. 

In addition to these concerns, there are questions about the type of microphone used as the 
primary sensor. With Harrison's cooperation, a copy of his original data was made available for 
study. A comparison of this data with the data obtained from new experiments reveals evidence 
that Harrison may have used an omnidirectional microphone as the primary sensor. Unlike the 
standard-issue gradient microphone, the omnidirectional microphone does not offer any signifi- 
cant attenuation of far-field noise. Consequently, Harrison's primary noise signal contained a 
substantial amount of low-frequency energy. Estimation of the coherence between Harrison's 
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primary and reference noises verified that only frequencies below about 1 kHz were highly corre- 
lated. Because of the high concentration of primary noise energy at low frequencies, ANC per- 
formed quite well. On the other hand, if a gradient, "noise-canceling" microphone had been used, 
then much of the low-frequency noise would have been canceled by the microphone, leaving little 
for adaptive noise cancellation to cancel. This issue is discussed in more detail in the next 
section. 

4.2    SIMULATIONS AT WRIGHT-PATTERSON AIR FORCE BASE 

In order to study the performance of adaptive noise cancellation in a more realistic cockpit 
environment, a series of new simulations were performed. The first set of experiments took place 
at Wright-Patterson Air Force Base (W.P.A.F.B.) near Dayton, Ohio. Recordings were made 
under a variety of conditions. 

The experiments were conducted in a partially soundproof room (about 20 ft by 20 ft). 
Along two of the walls, numerous loudspeakers were mounted. A subject, wearing a helmet and 
an MBU-12/P oxygen face mask was seated near the center of the room. In front of him, an 
additional loudspeaker was placed. An M-101 gradient microphone, mounted inside the face 
mask, served as the primary sensor. The reference sensor, a Controlonics ME-9A omnidirectional 
electret-condenser microphone, was attached to the exterior of the mask, facing away from the 
mask. In addition, a small acoustic speaker was mounted in each earpiece of the helmet, provid- 
ing an aural feedback of the subject's voice. 

To generate the ambient noise, a Hewlett-Packard HP8057A precision noise generator was 
used. This noise was shaped with an equalizer before being played through loudspeakers. Two 
different types of noises were used. The first noise signal had an approximately flat power spec- 
trum. The second noise signal was shaped to more closely resemble typical F-16 noise. These will 
be referred to as noise #1 and noise #2, respectively. However, it was later learned that the 
loudspeakers, which had a limited high-frequency power capability, were unable to accurately 
reproduce these noise signals. As a result, the two noises became very similar after passing 
through the loudspeakers. Both noise signals contained less high-frequency energy than was origi- 
nally intended. Nevertheless, they proved to be adequate for the purposes of this research. 

Several different configurations of the loudspeakers were investigated. Some of the experi- 
ments used only the single loudspeaker, located in front of the subject, while others used the 
many loudspeakers that covered two of the walls. When multiple loudspeakers were used, the 
noise was diffuse, emanating from many directions. When only one loudspeaker was used, the 
noise was concentrated in one direction, as it was in Harrison's experiment. However, this 
attempt to narrow the directionality of the noise source was hampered by the reverberation of 
the room. Because of the high noise intensity, reflections from the walls may have been signifi- 
cant. While no quantitative assessment of the reverberation of the room was made, it was appar- 
ent that the room was not designed to be anechoic. 
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Another item of interest was the oxygen tank. It is still unclear what effect its use may have 
on the performance of ANC. It was hypothesized that the passage of oxygen through the intake 
valve of the mask, together with an increased air pressure inside the mask, might accentuate the 
breath noise or introduce additional interference. This could have undesirable effects on the 
already-sensitive endpoint-detection algorithm used by Harrison. Therefore, experiments were per- 
formed both with and without the tank. 

In most of these experiments, the speech and noise were recorded separately, using two 
2-channel recordings, as Harrison had done in his experiment. However, a couple of experiments 
were also performed using composite recordings of speech and noise. That is, one 2-channel 
recording was made. One channel monitored the composite primary signal (speech plus noise), 
while the second channel monitored the composite reference signal (speech plus noise). This is 
more realistic than recording the speech and noise separately. 

In order to study all of these variations, six experiments were performed. These corres- 
ponded to various combinations of the four variables: one loudspeaker/many loudspeakers, noise 
#1/noise #2, tank/ no tank, and separate/composite recordings. Specifically, the following exper- 
iments were performed: 

Experiment 1: One loudspeaker, no tank, noise #1, separate recordings 

Experiment 2: One loudspeaker, no tank, noise #2, separate recordings 

Experiment 3: Many loudspeakers, no tank, noise #1, separate recordings 

Experiment 4: One loudspeaker, no tank, noise #1, composite recordings 

Experiment 5: One loudspeaker, tank, noise #1, separate recordings 

Experiment 6: Many loudspeakers, tank, noise #2, composite recordings 

When it was found that ANC performed poorly with even the simplest of these experiments, 
subsequent analysis of the data was limited to the first three experiments. Therefore, the effects 
of the oxygen tank and separate/composite recordings were not studied. 

Several details concerning the recording procedure need to be mentioned. To generate a 
speech signal, the subject read a short paragraph. When the speech and noise were recorded 
separately, two 2-channel recordings were made. In the first recording, the primary and reference 
speech signals were recorded with the noise source turned off. In the second recording, the pri- 
mary and reference noise signals were recorded while the subject was speaking and the noise 
source was turned on. In Experiments 1, 2, and 3, the noise recordings were made while the oxy- 
gen tank was still connected, for convenience. This should not matter because the subject was 
holding his breath, causing the intake valve of the mask to remain closed. 

The noise levels should also be mentioned. When only one loudspeaker was used, the levels 
of noise #1 and noise #2 were both measured to be 106 dB SPL. When multiple loudspeakers 
were used, noise #1 was at 106 dB SPL and noise #2 was at 100 dB SPL. 
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4.3    SIMULATIONS AT MIT LINCOLN LABORATORY 

When it was found that adaptive noise cancellation performed very poorly with the data 
from the simulations at Wright-Patterson Air Force Base, a second batch of experiments were 
performed. This time, the simulations took place at MIT Lincoln Laboratory in Lexington, 
Massachusetts, in the same room used by Harrison. The goal was to reproduce Harrison's results 
and explain why the W.P.A.F.B. data yielded such poor results. 

In most of these experiments, the procedure was very similar to Harrison's. The subject wore 
only an MBU-5/P oxygen mask, which was held in place by hand. The helmet was not worn, 
and no oxygen tank was connected. Again, two microphones were used as sensors. The primary 
microphone was mounted inside the face mask. The reference sensor, a Controlonics ME-9A 
omnidirectional electret-condenser microphone, was attached to the exterior of the mask, facing 
away from the mask. 

The primary issue being investigated was the effect of the environment on the coherence 
between the primary and reference noises. Therefore, only noise recordings were needed for the 
purposes of this research. Digitally-generated, white, Gaussian noise was used to create the 
ambient noise field. Again, the loudspeakers were limited in their high-frequency power capabil- 
ity. Consequently, the resulting noise field was concentrated at low frequencies. 

In the first three of seven experiments, an M-101 gradient microphone was used as the pri- 
mary sensor, and only one loudspeaker was used. The subject stood away from the loudspeaker 
by distances of approximately 1 ft, 4 ft, and 7 ft. Each time, the subject was oriented so that the 
reference microphone directly faced the loudspeaker. 

In the next three experiments, an omnidirectional microphone (the same type as the refer- 
ence microphone) was used as the primary sensor, and only one loudspeaker was used. It was 
known that Harrison had tried both the gradient and the omnidirectional microphones as pri- 
mary sensors. However, there was some uncertainty about which type of microphone was used in 
the experiment that he reported. Therefore, three new experiments were performed using the 
omnidirectional microphone as the primary sensor. Again, the subject stood away from the 
loudspeaker by distances of approximately 1 ft, 4 ft, and 7 ft. Each time, the subject was 
oriented so that the reference microphone directly faced the loudspeaker. 

In the last experiment, an M-101 gradient microphone was used as the primary sensor, and 
four loudspeakers were used. The loudspeakers were approximately located in each of the four 
corners of the room. This time, two independent noise sources (digitally-generated, white, Gauss- 
ian noise) were used. The first noise source was played through two of the loudspeakers at oppo- 
site corners of the room. The second noise source was played through the other two loud- 
speakers. The subject stood near the center of the room, where the noise level was 87 dB SPL. 

24 



Therefore, a total of seven experiments were performed at MIT Lincoln Laboratory: 

Experiment 1: Gradient microphone, one loudspeaker, 1 ft 

Experiment 2: Gradient microphone, one loudspeaker, 4 ft 

Experiment 3: Gradient microphone, one loudspeaker, 7 ft 

Experiment 4: Omnidirectional microphone, one loudspeaker, 1 ft 

Experiment 5: Omnidirectional microphone, one loudspeaker, 4 ft 

Experiment 6: Omnidirectional microphone, one loudspeaker, 7 ft 

Experiment 7: Gradient microphone, four loudspeakers 
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5.0   EXPERIMENTAL RESULTS 

As described in Section 4, many new experiments were performed. In the analysis of the ex- 
perimental data, it is not sufficient to examine only the performance of adaptive noise cancella- 
tion. In order to gain a useful explanation of the variation in performance, it is also necessary to 
examine the power spectra of the signals involved. 

Because of the decision to concentrate only on the noise components of the primary and refer- 
ence signals, not all of the experimental data was analyzed. The noise signals from the first three 
experiments at Wright-Patterson Air Force Base and all seven of the experiments at MIT Lincoln 
Laboratory (L.L.) were chosen for the analysis. In addition, the noise signals from Harrison's ex- 
periment were also included. For convenience, these experiments will be referred to by the fol- 
lowing names (for a more complete description of the experiments, see Sections 3.2, 4.2, and 4.3): 

HAR: Harrison's experiment (L.L., one loudspeaker) 

WP1: W.P.A.F.B., 1 loudspeaker, noise #1 

WP2: W.P.A.F.B., 1 loudspeaker, noise #2 

WP3: W.P.A.F.B., many loudspeakers, noise #1 

LL1 

LL2 

LL3 

LL4 

LL5 

LL6 

LL7 

L.L., gradient microphone, 1 loudspeaker, 1 ft 

L.L., gradient microphone, 1 loudspeaker, 4 ft 

L.L., gradient microphone, 1 loudspeaker, 7 ft 

L.L., omnidirectional microphone, 1 loudspeaker, 1 ft 

L.L., omnidirectional microphone, 1 loudspeaker, 4 ft 

L.L., omnidirectional microphone, 1 loudspeaker, 7 ft 

L.L., gradient microphone, 4 loudspeakers 

5.1    PERFORMANCE OF ADAPTIVE NOISE CANCELLATION 

In the first phase of processing the experimental data, the performance of adaptive noise 
cancellation was measured. For implementation, the LMS algorithm was chosen because of its 
computational efficiency and ease of use. Each of the eleven sets of data was processed according 
to the following procedure: 

(1) The primary and reference noise signals were first passed through a 4 kHz 
anti-aliasing filter and digitized with a 16-bit analog-to-digital converter, 
using a sampling rate of 10 kHz. 

(2) The signals were then passed through a 100 Hz high-pass digital filter, in 
order to eliminate 60 Hz hum and low-frequency drift. 
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(3) A 10-s segment was extracted from each signal and normalized to have 
zero mean and unit variance. 

(4) The LMS algorithm was then applied, using a filter length of 100 samples. 
All of the filter coefficients were initialized to zero. 

(5) Small amounts of delay were repeatedly added to either the primary chan- 
nel or the reference channel until the amount of noise reduction was 
maximized. 

(6) The adaptation constant was then incrementally varied until the maximum 
noise reduction was attained. In each case, n = 0.003 gave the best results. 

In order to determine the amount of noise reduction, the output variance, a|, was estimated, 
using the last 9.5 s of the output signal. (Skipping the first 0.5 s allowed plenty of time for the 
adaptive filter to converge.) The noise attenuation in decibels was then given by -10 log10 a\ 
(recall that the primary noise signal had unit variance). Table 5-1 shows the results of this per- 
formance analysis. Regarding these results, several observations can be made. First, the 15 dB 
attenuation achieved with Harrison's data is somewhat better than the 11 dB attenuation that was 
previously reported. This is easily explained. The 15 dB measurement was made using only the 
noise signals, whereas the 11 dB measurement was made using both the speech and noise signals. 
In all of the other experiments, one can see that ANC does, in fact, help reduce some of the 
noise. However, significant noise reduction was only obtained in the experiments in which an 
omnidirectional primary microphone was used (LL4, LL5, and LL6). In all of the experiments in 
which a gradient primary microphone was used, the noise attenuation was minimal. Therefore, 
there is a reason to suspect that Harrison's data was collected using an omnidirectional primary 
microphone. Finally, it should also be noted that the worst performance occurred in experiments 
WP3 and LL7, the only two experiments that used multiple loudspeakers. Based on these results, 
it appears that ANC only performs well when an omnidirectional microphone is used as the pri- 
mary sensor. For an explanation of this peculiar result, we must turn to spectral estimation 
techniques. 

5.2    METHOD OF SPECTRAL ANALYSIS 

Spectral analysis of the experimental data offers further insight into the behavior of adaptive 
noise cancellation. In the analysis that was performed, several quantities were of interest: 

(1) Spp(eJa'), the power spectrum of the primary noise signal. 

(2) Srr(ei<°), the power spectrum of the reference noise signal. 

(3) Szz(eJ<°), the power spectrum of the output noise signal. 

:2" 
(5)    H(eJ<u), the instantaneous transfer function of the adaptive filter. 

(4)    y\A!^0>), the coherence between the primary and reference noise signals. 
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TABLE 5-1 

ANC Performance 

Experiment Noise Reduction (dB) 

HAR 15.1 

WP1 4.1 

WP2 1.9 

WP3 1.7 

LL1 5.0 

LL2 2.4 

LL3 2.0 

LL4 9.2 

LL5 9.1 

LL6 8.2 

LL7 1.3 
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(Because the speech signals were not included in this analysis, p = np and r = nr.) The last item, 
H(ei£0), was easily obtained from the adaptive filter coefficients. However, for the other quantities, 
spectral estimation techniques were required. 

Because the simulated noise signals were known to have smooth power spectra, it was 
decided that classical spectral estimation techniques would provide adequate resolution. In partic- 
ular, the spectral estimates were obtained using Welch's method of averaging modified periodo- 
grams.18 Consider, for example, the computation of Spp(eJa'). In order to ensure stationarity, a 
segment of length 4096 was extracted from the primary noise signal. This 4096-point interval was 
then sectioned into 512-point segments, with a 256-point overlap between adjacent segments. In 
this manner, fifteen 512-point segments were obtained. We will refer to these as p^n), where 
0 ^ k ^ 14 and 0 ^ n < 511. The power spectrum estimate was then computed as follows: 

1        £ 
Spp(e)")= —      2   Ik(eJ«) (5.1) 

k = 0 
1023 

J     picWe-Jon 
n = 0 

(5.2) 

0^n^511 

(5.3) 
512 s£ n^ 1023 

1 511 
U =   V    w2(n) (5.4) 

512 ^ 
n = 0 

where w(n) was a Kaiser window. The computation of Srr(ei'°) and Szz(d
<u) followed the same 

procedure. 

According to its definition, the coherence between the primary and reference noise signals is 
given by 

IvH2 
72rp(ei») = : . (5.5) 

p Srr(eJ«0Spp(eJ") 

Here, Srp(eJtu) is the cross power spectrum between the primary and reference noise signals. The 
Welch method for estimating the cross power spectrum is a straightforward extension of the 
method for estimating the auto-power spectra. The coherence estimate is obtained by substituting 
the Welch estimates of Spp(e)t0), Srr(eJC0), and Srp(eJ<°) into Equation (5.5) References 2 and 14. 

Computation of H(e)co) was much simpler. The adaptive filter coefficients were observed at the 
middle of the time interval used for the power spectrum analysis. A 1024-point discrete Fourier 
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transform of these filter coefficients was then computed, yielding the instantaneous transfer func- 
tion of the adaptive filter. 

In order to further reduce the variance of the power spectrum estimates, additional smooth- 
ing (low-pass filtering) of the estimates was performed. The low-pass filter that was used for this 
smoothing had a pass band edge at a> = 7r/8. The computed transfer function of the adaptive fil- 
ter was also smoothed by this amount. In addition, the coherence estimate was smoothed, using a 
low-pass filter with a pass band edge at to = TT/16. The graphs of these smoothed estimates are 
much more visually pleasing than the unsmoothed estimates. 

From the coherence estimate, the predicted attenuation function was computed. This is 
simply a more useful representation of the coherence function. It was computed from the 
smoothed coherence, according to the defining equation (from Equation 2.31): 

atten(eit0) = -10 log10[l - y^e)")] dB (5.6) 

This provides a measure of the expected noise reduction, based upon the computed coherence 
function. Finally, the actual attenuation function was computed as follows: 

S   (eJC0) 
atten(eJ<°) = 10 login   —  (5.7) 

SpP(e>*>) 

By comparing the predicted attenuation with the actual attenuation, we can determine whether 
the coherence function is really a reliable predictor of ANC performance. 

5.3    RESULTS OF SPECTRAL ANALYSIS 

The spectral analysis was done for each of the eleven experiments. In Figure 5-1 to 5-11, the 
results are collected and displayed in graphical form. For each experiment, six graphs are shown: 
power spectra of the primary, reference, and output signals; the transfer function of the adaptive 
filter; the predicted attenuation function (derived from the coherence estimate); and the actual 
attenuation function. In each of the graphs, the abscissa represents the frequency, given in Hertz, 
and the ordinate value is plotted using a logarithmic scale (in decibels). Careful study of these 
graphs helps explain why adaptive noise cancellation performs well in some cases, but poorly in 
others. 

Let us begin by studying the spectra of Harrison's data, shown in Figure 5-1. First, we see that 
the reference spectrum is not white; there is about a 10 dB/octave downward tilt. As mentioned 
before, this is probably due to the limited performance of the loudspeaker used in the simulation. 
The primary spectrum is even more concentrated at low frequencies, due to the high-frequency 
attenuation by the face mask. In fact, the band of frequencies below 1 kHz comprises 99.8 per- 
cent of the signal's energy. The low-pass characteristic of the face mask is also observed in the 
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graph of the transfer function of the adaptive filter. (In this particular example, the adaptive fil- 
ter is primarily tracking the transfer function of the face mask.) With the primary signal so heav- 
ily concentrated at low frequencies, it is not surprising that ANC performed so well (15 dB noise 
reduction) in this case. In the discussion of Darlington's work in Section 3.3, it was shown that, 
in a diffuse field, ANC should be expected to perform well only if the primary noise spectrum is 
concentrated below about 1 kHz. A few comments should now be made about graphs of the pre- 
dicted attenuation function and the actual attenuation function. From the graph of the predicted 
attenuation, we see that the expected noise reduction is large at frequencies below 1 kHz, and 
small at higher frequencies. Equivalently, the coherence is large below 1 kHz, and smaller at high 
frequencies. (Because the coherence always lies between zero and one, the predicted attenuation 
function is always nonnegative.) The actual attenuation function exhibits the same type of behav- 
ior. However, below 1 kHz, the actual attenuation is somewhat better than predicted. Above 
3 kHz, the actual attenuation is worse than predicted. Indeed, the actual attenuation is negative 
above 3 kHz. Therefore, the predicted attenuation function is only a rough estimate of the actual 
attenuation. With this greater understanding of Harrison's data, let us now look at the data from 
the other experiments, in hopes of explaining the variations in ANC performance. 

The most striking result of this spectral analysis involves the primary noise spectra. In the 
cases where an omnidirectional primary microphone was used (LL4, LL5, and LL6), the primary 
noise spectra are concentrated mostly at low frequencies (see Figures 5-8, 5-9, and 5-10). For 
example, in LL4, the frequency band below 1 kHz comprises 97 percent of the primary noise 
energy. On the other hand, in the cases where a gradient primary microphone was used (LL1, 
LL2, LL3, and LL7), the primary noise spectra have a much broader shape, with large concen- 
trations near 500 Hz and 2 kHz (see Figures 5-2, 5-3, 5-4, and 5-11). For example, in LL1, the 
frequency band contains only 37 percent of the primary noise energy. This is a direct result of 
the noise canceling behavior of the gradient microphone. As discussed in Section 3.1, the gradient 
microphone offers significant attenuation of the far-field noise at low frequencies. Equivalently, 
this can be viewed as a relative boost of the high-frequency energy. The transfer function of the 
adaptive filter also exhibits this high-frequency boost in the cases where a gradient primary mic- 
rophone was used. (In this case, the adaptive filter tends to track the cascade of the transfer 
function of the face mask and the transfer function of the primary microphone.) 

Therefore, it is clear that the use of a gradient microphone results in a wideband primary 
noise spectrum, whereas the use of an omnidirectional microphone results in a primary noise 
spectrum with very little energy above 1 kHz. Looking again at Figure 5-1, we see that the pri- 
mary spectrum and the adaptive filter transfer function most closely resemble the ones corres- 
ponding to the experiments that used an omnidirectional primary microphone. This is strong evi- 
dence that the primary sensor in Harrison's experiment was an omnidirectional microphone. 
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Examination of the attenuation functions shows that, in all of the experiments, the noise 
reduction was greatest below 1 kHz. Above 1 kHz, there was little or no reduction of the noise. 
In fact, in many cases there was even a slight increase in the noise level at frequencies above 
3 kHz. This was most pronounced when the primary noise level was very low at high frequencies 
(measurement noise was then a significant factor). As expected, the coherence estimate is an 
approximate, but useful, indicator of the performance of ANC. Most of the graphs of the pre- 
dicted attenuation show that high correlation occurs only at low frequencies, in agreement with 
Darlington's results. It is interesting that this behavior appears not only in the multiple- 
loudspeaker experiments, but also in the single-loudspeaker experiments. Therefore, we can infer 
that the simulated noise field was fairly diffuse, even when a single loudspeaker was used. In 
most cases, the actual attenuation exceeded the predicted attenuation at low frequencies; at high 
frequencies, the actual attenuation was usually less than the predicted attenuation. Nevertheless, 
the coherence function and the predicted attenuation function are still reasonable predictors of 
the performance of ANC. 

Further examination of the attenuation functions reveals another interesting point. The two 
experiments with the smallest attenuation are WP3 and LL7 (see Figure 5-4 and 5-11), in which 
multiple loudspeakers were used. Table 5-1 shows that these experiments also exhibited the least 
amount of noise reduction. As expected, the increased diffuseness of the noise field resulted in 
less coherence and less noise reduction. The WP3 data shows very little coherence, whereas the 
LL7 data shows slightly more coherence at low frequencies, in accordance with Darlington's 
results. These two experiments took place in rooms at different locations, so the difference is 
attenuation may be a result of acoustic differences between the two rooms. 

Together, the performance measurements in Table 5-1 and observations of the spectral esti- 
mates provide a fairly consistent explanation of the behavior of ANC in the cockpit environment. 
Based on this discussion, it should now be clear that, as predicted, noise reduction is only effec- 
tive at frequencies below about 1 kHz. Consequently, ANC performed best when the primary 
noise spectrum was concentrated at low frequencies. This low-frequency concentration was 
strongest in the experiments that used an omnidirectional primary microphone. Furthermore, 
there is convincing evidence that an omnidirectional primary microphone was used in Harrison's 
experiment. This perhaps explains why ANC performed so well with his data. In fact, Table 5-1 
shows that ANC performed slightly better in HAR than in LL4, LL5, and LL6, the other exper- 
iments that used an omnidirectional microphone. This is explained by the differences in the refer- 
ence noise spectra. In HAR, the reference noise spectrum tilts downward by about 10 dB/octave, 
whereas the reference noise spectra for LL4, LL5, and LL6 are more flat. Therefore, the primary 
noise spectrum for HAR has even less high-frequency energy than the primary spectra for LL4, 
LL5, and LL6. Because of this increased low-frequency concentration, the amount of noise reduc- 
tion was slightly higher. 
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6.    CONCLUSION 

6.1    SUMMARY OF RESULTS 

Previous research of adaptive noise cancellation in a fighter jet cockpit environment has been 
inconclusive. In Harrison's cockpit simulation, ANC yielded promising results. However, Darling- 
ton, et al., later claimed that Harrison's success was due to a lack of diffuseness in the simulated 
noise field. Because of this and other shortcomings of the simulation, there still has been much 
uncertainty about the effectiveness of ANC in an actual cockpit environment. A series of new 
experiments were performed in an effort to resolve these questions. 

Altogether, eleven sets of data (primary and reference noise signals) were studied, including a 
copy of Harrison's experimental data. Because the main issue was the effect of the noise field on 
ANC performance, it was sufficient to consider only the noise signals. Therefore, the speech sig- 
nals were not included in the analysis. 

In the first phase of data analysis, the performance of ANC was measured for each experi- 
ment. Significant noise reduction was observed only in the experiments in which an omnidirec- 
tional primary microphone was used. The worst performance (about 1 dB attenuation) was 
observed in the two experiments in which multiple loudspeakers were used. This supports Darling- 
ton's prediction that the performance should decrease as the diffuseness of the noise increases. 
Therefore, in actual cockpit environment, with speech present and with nonideal conditions, the 
noise reduction would be negligible. 

In the second phase of processing, a spectral analysis of the data was performed. Based on 
this spectral analysis, several conclusions can be drawn. First, the primary noise signal contained 
much more high-frequency energy when a gradient primary microphone was used than when an 
omnidirectional primary microphone was used. This distinction provides evidence that the pri- 
mary sensor in Harrison's experiment was an omnidirectional microphone. Second, examination 
of the power spectra shows that, in most cases, significant noise reduction only appears below 
about 1 kHz. Together, these two observations explain why the performance of ANC was best 
when an omnidirectional primary noise spectrum was concentrated at low frequencies. 

Although the use of an omnidirectional primary microphone does result in better ANC per- 
formance, this is somewhat misleading. One must keep in mind that, in this case, ANC is cancel- 
ing the same noise components that a gradient microphone would cancel, namely, the band of fre- 
quencies below 1 kHz. Therefore ANC with an omnidirectional primary microphone is no better 
than use of a gradient microphone with no ANC. In fact, the gradient microphone attenuates the 
low-frequency noise even more than ANC does. The gradient microphone is preferred for other 
reasons as well. As discussed in Section 3.1, the gradient microphone tends to counteract the 
speech distortion caused by the small enclosure of the face mask. In conclusion, it appears that 
single-reference ANC would be ineffective in an actual cockpit environment. 
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6.2    RECOMMENDATIONS FOR FUTURE RESEARCH 

In regard to future research, two issues deserve mentioning. First, although single-reference 
adaptive noise cancellation appears to be ineffective, it remains uncertain whether multiple- 
reference ANC would be effective. However, it is clear that poor coherence would still be a prob- 
lem in the multiple-reference case. With a single reference sensor in a diffuse noise field, the pri- 
mary noise signal and the reference noise signal exhibit very little coherence above about 1 kHz. 
Additional reference signals would suffer from the same problem. In order for multiple-reference 
ANC to be successful, the coherent portions (i.e., the portions coherent with the primary noise) 
of the reference signals would have to somehow combine constructively to form a signal more 
coherent with the primary noise. 

However, a more fundamental question is whether further noise reduction is really that 
important. The premise has been that vocoders and speech recognition systems fail primarily 
because of excessive noise interference. However, with a gradient microphone, the primary signal- 
to-noise ratio is about 25 dB, which is really not so bad. Furthermore, recent research15 indicates 
that noise interference inside the face mask is not the major source of degradation in speech 
recognition systems. The variations in the pilot's speech appear to be a much more significant 
problem. It has been established17 that large noise levels at a person's ears, as well as mental and 
physical stress, can dramatically alter speech production. In particular, there is an increase in 
pitch and emphasis of high-frequency components. This phenomenon and its effect on speech 
recognition is an important concern that deserves further investigation. 
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